x^2+15=2x^2-65

Simple and best practice solution for x^2+15=2x^2-65 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x^2+15=2x^2-65 equation:



x^2+15=2x^2-65
We move all terms to the left:
x^2+15-(2x^2-65)=0
We get rid of parentheses
x^2-2x^2+65+15=0
We add all the numbers together, and all the variables
-1x^2+80=0
a = -1; b = 0; c = +80;
Δ = b2-4ac
Δ = 02-4·(-1)·80
Δ = 320
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{320}=\sqrt{64*5}=\sqrt{64}*\sqrt{5}=8\sqrt{5}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{5}}{2*-1}=\frac{0-8\sqrt{5}}{-2} =-\frac{8\sqrt{5}}{-2} =-\frac{4\sqrt{5}}{-1} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{5}}{2*-1}=\frac{0+8\sqrt{5}}{-2} =\frac{8\sqrt{5}}{-2} =\frac{4\sqrt{5}}{-1} $

See similar equations:

| x(x(x(x)))=8000 | | 8=5+a | | 2/5b=-2 | | 2x+x+33=90 | | 6x-2x=-9x-16 | | 34n^2-45n=0 | | V+6=5v-2 | | (m-4)(5m+8)=0 | | 6=12+x | | -x+5×6x=1+5x+3 | | 2(2x+1)=13+x | | 200+3x=5x+100 | | -3y+Y=-8 | | -24y2=9y | | 30r2=-15r | | (2x+15)+71=90 | | 10b2+25b=0 | | -8y2-10y=0 | | 3k^2+75k+24=0 | | 6n2-15n=0 | | X/2x+17=9/14 | | Y=-4y+14 | | 9p2+18p=0 | | 3.53d=70 | | b2+14b=0 | | X+5+4x=40 | | 4x+12-1=4x-16 | | 2*x+11=145 | | t+9=-8 | | 4x+6=-4x+2 | | y4+45y2−196=0 | | 180-40°=x |

Equations solver categories